LSA SAF Meteosat FRP products – Part 2: Evaluation and demonstration for use in the Copernicus Atmosphere Monitoring Service (CAMS)
نویسندگان
چکیده
Characterising the dynamics of landscape-scale wildfires at very high temporal resolutions is best achieved using observations from Earth Observation (EO) sensors mounted onboard geostationary satellites. As a result, a number of operational active fire products have been developed from the data of such sensors. An example of which are the Fire Radiative Power (FRP) products, the FRP-PIXEL and FRP-GRID products, generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from imagery collected by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) series of geostationary EO satellites. The processing chain developed to deliver these FRP products detects SEVIRI pixels containing actively burning fires and characterises their FRP output across four geographic regions covering Europe, part of South America and Northern and Southern Africa. The FRP-PIXEL product contains the highest spatial and temporal resolution FRP data set, whilst the FRP-GRID product contains a spatio-temporal summary that includes bias adjustments for cloud cover and the nondetection of low FRP fire pixels. Here we evaluate these two products against active fire data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and compare the results to those for three alternative active fire products derived from SEVIRI imagery. The FRP-PIXEL product is shown to detect a substantially greater number of active fire pixels than do alternative SEVIRI-based products, and comparison to MODIS on a per-fire basis indicates a strong agreement and low bias in terms of FRP values. However, low FRP fire pixels remain undetected by SEVIRI, with errors of active fire pixel detection commission and omission compared to MODIS ranging between 9–13 % and 65– 77 % respectively in Africa. Higher errors of omission result in greater underestimation of regional FRP totals relative to those derived from simultaneously collected MODIS data, ranging from 35 % over the Northern Africa region to 89 % over the European region. High errors of active fire omission and FRP underestimation are found over Europe and South America and result from SEVIRI’s larger pixel area over these regions. An advantage of using FRP for characterising wildfire emissions is the ability to do so very frequently and in near-real time (NRT). To illustrate the potential of this approach, wildfire fuel consumption rates derived from the SEVIRI FRP-PIXEL product are used to characterise smoke emissions of the 2007 “mega-fire” event focused on Peloponnese (Greece) and used within the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) as a demonstration of what can be achieved when using geostationary active fire data within the Copernicus Atmosphere Monitoring Service (CAMS). Qualitative comparison of the modelled smoke plumes with MODIS optical imagery illustrates that the model captures Published by Copernicus Publications on behalf of the European Geosciences Union. 13242 G. Roberts et al.: LSA SAF Meteosat FRP products – Part 2 the temporal and spatial dynamics of the plume very well, and that high temporal resolution emissions estimates such as those available from a geostationary orbit are important for capturing the sub-daily variability in smoke plume parameters such as aerosol optical depth (AOD), which are increasingly less well resolved using daily or coarser temporal resolution emissions data sets. Quantitative comparison of modelled AOD with coincident MODIS and AERONET (Aerosol Robotic Network) AOD indicates that the former is overestimated by ∼ 20–30 %, but captures the observed AOD dynamics with a high degree of fidelity. The case study highlights the potential of using geostationary FRP data to drive fire emissions estimates for use within atmospheric transport models such as those implemented in the Monitoring Atmospheric Composition and Climate (MACC) series of projects for the CAMS.
منابع مشابه
LSA SAF Meteosat FRP products – Part 1: Algorithms, product contents, and analysis
Characterizing changes in landscape fire activity at better than hourly temporal resolution is achievable using thermal observations of actively burning fires made from geostationary Earth Observation (EO) satellites. Over the last decade or more, a series of research and/or operational “active fire” products have been developed from geostationary EO data, often with the aim of supporting bioma...
متن کاملEvaluation of an Operational Leaf Area Index Retrieval Approach Using Vegetation and Modis Data
An operational method has been proposed to estimate the leaf area index (LAI) from satellite imagery in the framework of EUMETSAT Satellite Application Facility on Land Surface Analysis (LSA SAF). This study evaluates the performance of the LSA SAF LAI retrieval algorithm when prototyped to VEGETATION/CYCLOPES and MODIS reflectances over Europe for the 2000-2003 period. The results indicate tha...
متن کاملMeteosat SEVIRI Fire Radiative Power (FRP) Products from the
4 Wooster, M.J., Roberts, G., Freeborn, P. H., Xu, W., Govaerts, Y., Beeby, R., 5 He, J. , A. Lattanzio, Fisher, D., and Mullen, R. 6 7 8 1 King’s College London, Environmental Monitoring and Modelling Research Group, 9 Department of Geography , Strand, London, WC2R 2LS, UK. 10 2 NERC National Centre for Earth Observation (NCEO), UK. 11 3 Geography and Environment, University of Southampton, Hi...
متن کاملTowards a continuous monitoring of evapotranspiration based on MSG data
In the framework of the EUMETSAT’s Land Surface Analysis– Satellite Application Facility (LSA–SAF), a method was developed to estimate evapotranspiration (ET) over Europe. The methodology follows a Soil Vegetation Atmosphere Transfer (SVAT) approach. LSA–SAF provides main forcings deduced from Meteosat Second Generation (MSG): visible and infrared surface radiative fluxes and daily surface albe...
متن کاملLong Term Validation of Land Surface Temperature Retrieved from MSG/SEVIRI with Continuous in-Situ Measurements in Africa
Since 2005, the Land Surface Analysis Satellite Application Facility (LSA SAF) operationally retrieves Land Surface Temperature (LST) for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat Second Generation (MSG). The high temporal resolution of the Meteosat satellites and their long term availability since 1977 make their data highly valuable for climate studies. In o...
متن کامل